COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Engineering				
DEPARTMENT	Financial and Management Engineering				
ACADEMIC UNIT	Chios				
LEVEL OF STUDIES	Undegraduate				
COURSE CODE	FE 0148 SEMESTER 4				
COURSE TITLE	Transport Phenomena				
INDEPENDENT TEACH	ING ACTIVIT	TIES			
if credits are awarded for sepa	rate components of the WEEKLY				
course, e.g. lectures, laborato	ory exercises, etc. If the TEACHING C		CREDITS		
credits are awarded for the wl	hole of the course, give HOURS				
the weekly teaching hours of	the weekly teaching hours and the total credits				
			3		4.5
Add rows if necessary. The orgo	anisation of	teaching			
and the teaching methods used	l are describ	oed in detail			
at (d).					
COURSE TYPE	Special Ba	ckground			
general background,					
special background,					
specialised general					
knowledge, skills					
development					
PREREQUISITE COURSES:					
	Crock				
	GIEEK				
FRASMUS STUDENTS					
	http://www.fme.aegean.gr/en/c/transport-				
	nhenomena-fluids-heat				
	Phenomen	u muus-mat			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

•	Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for
	Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

By the end of the course students should be capable to:

- Know what various quantities mean and be able to determine the properties of a fluid (density, viscosity, compressivity, etc)
- Understand the meaning of pressure and more specifically the pressure of a gas and hydrostatic pressure.
- Be able to use the ideal gas law.
- Be able to solve problems of fluids in equilibrium, eg. Calculate pressure and forces acting on the walls of the container.
- Apply Bernoulli equation in the motion of ideal fluids.
- Know Reynolds' theorem for the study of mass, momentum and energy transport and be able to apply it in open systems.
- Be able to identify laminar and turbulent flow.
- Be able to calculate flows in closed pipes and flow differences because of major (primary) and minor (secondary) losses.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Adapting to new situations	Respect for difference and multiculturalism
Decision-making	Respect for the natural environment
Working independently	Showing social, professional and ethical
Team work	responsibility and sensitivity to gender
Working in an international	issues
environment	Criticism and self-criticism
Working in an interdisciplinary	Production of free, creative and inductive
environment	thinking
Production of new research ideas	
• Working independently	

(3) SYLLABUS

Some Characteristics of Fluids, Analysis of Fluid Behavior, Measures of Fluid Mass and Weight, Density, Specific Weight, Specific Gravity, Ideal Gas Law, Viscosity, Compressibility of Fluids, Compression and Expansion of Gases, Vapor Pressure, Surface Tension, Viscosity. - Pressure at a Point, Pressure Variation in a Fluid at Rest, Incompressible Fluid, Standard Atmosphere, Measurement of Pressure. - Flotation, Archimedes' Principle, Basic equations of Fluid Statics, Rigid body motion of a fluid,

Forces exerted by fluids on a surface.-Newton's Second Law along and normal to a Streamline; Static, Stagnation, Dynamic, and Total Pressure; Examples of Use of the Bernoulli Equation, Confined Flows, Flowrate Measurement, Restrictions on Use of the Bernoulli Equation.-The Velocity Field, Eulerian and Lagrangian Flow Descriptions, The Acceleration Field, The Material Derivative, Convective Effects, Control Volume and The Reynolds Transport Theorem.-Conservation of Mass-The Continuity System. Equation, Derivation of the Continuity Equation, Fixed Nondeforming Control Volume, Newton's Second Law—The Linear Momentum Equation, Derivation of the Linear Momentum Equation, Application of the Linear Momentum Equation, First Law of Thermodynamics—The Energy Equation, Derivation of the Energy Equation, Comparison of the Energy Equation with the Bernoulli Equation.- (Additional optional material – two additional lectures) Irrotational Flow, Some Basic, Plane Potential Flows, Uniform Flow, Source and Sink, Vortex, Flow around a Circular Cylinder, Viscous Flow, Stress-Deformation Relationships, The Navier-Stokes Equations, Some Simple Solutions for Viscous Incompressible Fluids, Steady, Laminar Flow between Fixed Parallel Plates, Couette Flow, Steady, Laminar Flow in Circular Tubes

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face or via distant learning because of	of		
Face-to-face, Distance learning, covid-19	covid-19		
etc.			
USE OF INFORMATION AND Classweb, zoom	Classweb, zoom		
COMMUNICATIONS			
TECHNOLOGY			
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS Activity Semester worklo	bad		
The manner and methods of			
teaching are described in detail. Lectures 3.5			
<i>Lectures, seminars, laboratory</i> mid and final Exams 1.0			
practice, fieldwork, study and Course total			
analysis of bibliography, 4.5			
tutorials, placements, clinical			
practice, art workshop,			
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
principles of the ECIS			
EVALUATION			
Description of the evaluation One final written exam (or via internet) or 2			
procedure midterm exams			
Language of evaluation,			
methods of evaluation,			
summative or conclusive,			
multiple choice questionnaires,			
short-unswer questions, open-			
colving written work			
solving, whilen work,			
essuy/report, or a examination,			
work clinical examination of			
nationt art interpretation			
other			

Specifically-defined evaluation	
criteria are given, and if and	
where they are accessible to	
students.	

(4) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

A) Principal Reference:

- Fluid Mechanics, Munson Okooshi Huensch Rothmayer, 8η Έκδοση /2016, ISBN: 978-960-418-525-2 (in Greek Translation)
- Applied Fluid Engineering, Horst Herr, 2010, 1η εκδοση, 2010. (in Greek translation)

B) Additional Reference:

- Fluid Mechanics, Antonios Liakopoulos, 1st edition, 2010 (in Greek)
- Fluid Mechanics, Streeter/Wylie/Bedford Edition 576/2009, (in Greek translation)
- Engineering Fluid Mechanics, C.T. Crowe, D.F. Elger, B.C. Williams, J.A. Roberson, 9th edition, 2009 John Wiley and Sons